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Abstract. Long-range potentials have been calculated for 3He2 molecules dissociating to 3He 2 3S + 3He
2 3P, including the retarded dipole and the van der Waals interactions. Ultra-long-range wells with depths
of up to about 2.4 GHz have been found in many of the adiabatic body-fixed potentials and rovibrational
levels have been calculated for some of these wells, which have been found to support up to 4 rotationless
vibrational levels.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 31.50.Df Potential energy surfaces for excited elec-
tronic states – 33.20.Ea Infrared spectra

1 Introduction

Starting from a gas of cooled metastable 4He atoms, He
(1s 2s 3S), He∗, Léonard et al. [1,2] have observed ultra-
long-range weakly-bound levels in 4He2, these levels disso-
ciating to 4He(1s 2s 3S) + 4He(1s 2p 3PJ). The position
of these levels is in excellent agreement with calculations
based primarily on a knowledge of the fine-structure inter-
vals in He(1s 2p 3PJ) and the C3 coefficient for the long-
range resonance dipole interaction between He atoms in
the (1s 2s 3S) and (1s 2p 3P) states [1–4]. Since 3He(1s 2s
3S) has been cooled and trapped [5] in a Magneto-Optical
Trap (MOT) in the f = 3/2, mf = 3/2 state with com-
parable densities and temperatures to 4He∗, we examine
in this paper whether ultra-long-range states can also be
expected for 3He.

In 4He(1s 2p 3PJ) there is considerable cancellation
between the different contributions to the fine-structure
splittings [6] and the resulting splittings are small and
far from satisfying the Landé interval rule. Since the fine-
structure splittings are small, the usual clear separation of
the fine and hyperfine structure does not occur: the fine
structure in 4He(1s 2p 3PJ) spans ≈32 GHz while the cor-
responding fine and hyperfine levels in 3He span 34 GHz.
Hence some of the hyperfine levels have to be viewed as
being in intermediate coupling. Also the hyperfine split-
ting in 3He (1s 2s 3S), 6.739701 GHz [7], is about three
times the fine-structure splitting between the J = 1 and
J = 2 levels of 4He 23PJ .

Given the different separated-atom behaviour, a dif-
ferent pattern of long-range potentials from those in 4He
can be expected. Also, with more atomic levels involved,
more potentials will be obtained. While the lighter 3He
atoms imply a zero-point energy about 15% larger than
in 4He for the same potential curvature, in that system up
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to six levels were obtained in one potential, so, given com-
parable well-depths and positions of minima, some bound
vibrational levels should exist.

In this paper we derive the various potentials in a
body-fixed description and solve for the vibrational lev-
els in certain potentials displaying long-range wells and
a repulsive dipole potential towards the short-range sep-
arations, where otherwise accurate ab initio calculations
would be required. The use of single-channel calculations
may allow a better assignation of the vibrational lev-
els than the results from full close-coupled calculations.
While a highly accurate treatment requires solution of
the coupled equations, the work of Venturi et al. [3] for
the long-range molecules in 4He has shown that the ef-
fect of the Coriolis couplings on the position of the vi-
brational levels is relatively small. Similar success of a
Body-Fixed approach has been noted by Williams et al. [8]
for long-range states in Na2. We recall that the dipole
potentials of interest here behave as C3/R3, where R
denotes the internuclear separation, while the neglected
Coriolis interaction behaves as �

2/2µR2, µ being the re-
duced mass, so the two interactions become comparable at
R ≈ 2µC/�

2 ≈ 35000a0 for this system. The most excited
4He long-range state had an outer classical turning point
of about 1150a0 [1].

2 Theory

We consider first the calculation of the potential matrix
where the 3He(1s 2p 3PJ) hyperfine levels can be labelled
by J and f , where f = J + i, i being the nuclear angu-
lar momentum, of magnitude (�/2). Below we consider
transforming the potential matrix to an intermediate cou-
pling basis allowing for mixing of different J values with
the same f value. Allowance must also be made for the
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inverted hyperfine levels of the metastable 3He (1s 2s 3S1)
level, separation 6.74 GHz [7].

The interactions to be considered are the reso-
nance dipole interaction, including allowance for retarda-
tion [9,10], and the van der Waals dispersion interaction,
where accurate values from Marinescu, as cited by [3], for
the C6 coefficient are known for Hund’s case (a) Σ and
Π potentials. We consider first the calculation of the in-
teraction in an unsymmetrized basis and then examine
the additional effects of symmetrization. Following [11]
let |[(L1S1)J1 i1, f1]a [(L2S2)J2 i2, f2]b; Fφ〉 denote the
body-fixed two-atom wavefunction with the z-axis along
the internuclear axis, [(L1, S1)J1 i1, f1]a denoting the an-
gular momenta of atom a, in the usual notation, and
corresponding values with subscript 2 for atom b. To
simplify the notation other quantum numbers needed to
specify the levels completely are not indicated explicitly.
Here Lx + Sx = Jx , Jx + ix = fx , x = 1, 2, f1 + f2 = F,
i1 + i2 = I and φ = Λ+Σ+ι denotes the projection of the
resultant angular momentum, F, on the internuclear axis.
Also for simplicity we shall on occasion use the shorthand
notation αx ≡ [(LxSx)Jx, ix, fx], x = 1, 2. A wavefunction
for the complete system with total angular momentum T
and space-fixed projection MT can be written

|(α1)a, (α2)b, F, φ; T, MT 〉 = |(α1)a, (α2)b; Fφ〉

× DT∗
MT φ(ϕ, ϑ, 0) F [(α1)a, (α2)b, ; Fφ; T, MT ](R), (1)

where DT∗
MT φ is the usual symmetric-top eigenfunction, ϑ

and ϕ are the polar coordinates of the internuclear axis in
the space-fixed system and F denotes the radial wavefunc-
tion. Gao [12] has formulated the space-fixed description
of the scattering of two atoms, each with fine and hyperfine
structure. The Body-Fixed wavefunction, equation (1), is
closely related to the space-fixed wavefunction employed
by Gao [12], who uses the relative angular momentum 	,
F + � = T:

|(α1)a, (α2)b, F, 	; T, MT , PT 〉 =
∑

φ

[	]1/2(−1)�−F−φ

×
(

T F 	
−φ φ 0

)
|(α1)a, (α2)b, F, φ; T, MT 〉, (2)

where PT is the total parity of the space-fixed wave-
function, given by P1P2(−1)�, where Pi is the par-
ity of the state of atom i. Here [k1k2 · · · ] denotes

(2k1 + 1)(2k2 + 1) · · · and
( · · ·
· · ·

)
denotes a 3 − j sym-

bol.
Given the level of angular momentum coupling re-

quired, the use of irreducible spherical tensors provides
a convenient way of evaluating the necessary matrix el-
ements. Following Zare [13] we introduce the bispherical
harmonic

X(k, 0) =
∑

m

[k]1/2

(
1 1 k
m −m 0

)
Y1m(r̂a)Y1−m(r̂b),

where Y�m denotes the spherical harmonic and r̂x denotes
the orientation of the p electron on atom x, x = a, b. Then
the retarded dipole interaction, V3, of Stephen [9] can be
written:

V3 = −4π

3

√
6
qaqb

R3

{
X(2, 0)[cos y(1 − y2/3) + y sin y]

−
√

2
3

X(0, 0)y2 cos y

}
, (3)

where qx is the magnitude of the transition dipole moment
matrix element on atom x and y = κR, κ = 2π/λ, is the
magnitude of the wavevector of the 1089 nm photon for
the He 2 3S – 2 3P transition. Since the wavefunctions for
the relative motion do not affect the matrix elements of
the interatomic interactions, for the dipole interaction we
require “exchange” matrix elements of the form

〈(α1)a, (α2)b, ; Fφ|X(0, 0)| (α′
2)a , (α′

1)b , ; F ′ φ〉 =

δFF ′

4π
√

3
[f1f

′
1f2f

′
2J2J

′
2]

1/2(−1)f ′
1+f2+2f ′

2+F

×
{

1 1
2 f1

f ′
2 1 J ′

2

}{
1 1

2 f ′
1

f2 1 J2

}{
f1 f2 F
f ′
1 f ′

2 1

}
, (4)

where
{ · · ·
· · ·

}
denotes a 6−j symbol and we have assumed

L1 = L′
1 = 0, S1 = S′

1 = J1 = J ′
1 = L2 = S2 = S′

2 =
1, i1 = i2 = 1/2. Similarly

〈(α1)a, (α2)b, ; Fφ|X(2, 0)|(α′
2)a, (α′

1)b, ; F ′φ〉 =
√

5
4π

(−1)F+f ′
1+f ′

2−φ+1[FF ′f1f
′
1f2f

′
2J2J

′
2]

1/2

(
F 2 F ′

−φ 0 φ

)

×
{

1 1
2 f1

f ′
2 1 J ′

2

}{
1 1

2 f ′
1

f2 1 J2

}⎧
⎨

⎩

f1 f ′
2 1

f2 f ′
1 1

F F ′ 2

⎫
⎬

⎭ , (5)

where

⎧
⎨

⎩

· · ·
· · ·
· · ·

⎫
⎬

⎭ denotes a 9 − j symbol. For the dispersion

interaction we introduce

X̃(2, 0) =
√

5
(

2 0 2
0 0 0

)
Y00(r̂a)Y20(r̂b) ≡

√
5

4π
P2(cos θb),

where P2(x) denotes the second Legendre polynomial and
we need the matrix element of

V6 = C
(0)
6 + C

(2)
6 X̃(2, 0). (6)

Here

C
(0)
6 =

(
CΣ

6 + 2CΠ
6

)
/3, C

(2)
6 = 5

(
CΣ

6 − CΠ
6

)
/3,

where CΣ
6 and CΠ

6 are the case (a) van der Waals coef-
ficients for Σ and Π symmetry, respectively. In this case
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only the ‘direct’ matrix element is non-vanishing:

〈(α1)a, (α2)b, ; Fφ|X̃(2, 0)|(α′
1)a, (α′

2)b, ; F ′φ〉 =

δf1f ′
1

√
6

4π
[FF ′f2f

′
2J2J

′
2]

1/2(−1)2f ′
2−f1+J2+J′

2−φ+1/2

×
(

F 2 F ′

−φ 0 φ

) {
F ′ F 2
f2 f ′

2 f1

}{
J2

1
2 f2

f ′
2 2 J ′

2

}{
J2 J ′

2 2
1 1 1

}
,

(7)

with values assumed as in equation (4).

3 Symmetrization

The function |(α1)a, (α2)b, F, φ; T, MT 〉 is not an eigen-
function of either the total parity operator, P̂T , or the
exchange parity operator, X̂n, for exchange of the nuclei.
Using the results from Gao [12] and the inverse of equa-
tion (2) it is straightforward to show that

P̂T |(α1)a, (α2)b, F, φ; T, MT 〉 =

(−1)T+F P1P2|(α1)a, (α2)b, F,−φ; T, MT 〉, (8)

consistent with the result of Launay [11], who did not
consider hyperfine structure. Hence eigenfunctions of to-
tal parity, eigenvalue (−1)PT where PT = 0, 1, can be
constructed as

|(α1)a, (α2)b, F, φ̄; T, MT , PT 〉=(|(α1)a, (α2)b, F, φ̄; T, MT 〉

+ (−1)PT +T+F P1P2|(α1)a, (α2)b, F,−φ̄; T, MT 〉)
× [2(1 + δφ̄,0)]

−1/2, (9)

where φ̄ = |φ|.
Next it is necessary to ensure the wavefunctions em-

ployed are eigenfunctions of X̂n. Again following Gao [12]
we find

X̂n|(α1)a, (α2)b, F, φ̄; T, MT , PT 〉=

(−1)F+f1+f2+N1N2P1P2|(α2)a, (α1)b, F, φ̄; T, MT , PT 〉,
(10)

where Ni is the number of electrons on atom i. Hence, for
the case of interest here, P1P2 = −1, N1N2 even,

|α1, α2, F, φ̄; T, MT , PT 〉 = {|(α1)a, (α2)b, F, φ̄; T, MT , PT 〉

+ (−1)F+f1+f2+PT |(α2)a, (α1)b, F, φ̄; T, MT , PT 〉}/21/2,
(11)

gives a fermion wavefunction.
Using this symmetrized wavefunction we find, since

φ̄, T, MT and PT are conserved for both direct and ex-
change operators:

〈α1, α2, F, φ̄; T, MT , PT |V3|α′
1, α

′
2, F

′, φ̄; T, MT , PT 〉 =

(−1)PT +f ′
1+f ′

2+F ′

× 〈(α1)a, (α2)b, F, φ̄|V3|(α′
2)a, (α′

1)b, F
′, φ̄〉, (12)

〈α1, α2, F, φ̄; T, MT , PT |V6|α′
1, α

′
2, F

′, φ̄; T, MT , PT 〉 =

〈(α1)a, (α2)b, F, φ̄|V6|(α′
1)a, (α′

2)b, F
′, φ̄〉, (13)

where the matrix elements on the right-hand sides can be
obtained using equations (3–7). These results hold also
for φ̄ = 0, except that in that case, from equation (9),
the choice of the total parity in effect selects the parity
of F so that even and odd values of F are decoupled.
For all values of φ̄, for each value of the total angular
momentum, T , there are two possible solutions, depending
on PT , as for the space-fixed description. This symmetry
is here associated with reflection in a plane through the
nuclei, which is equivalent to inversion in a space-fixed
system [14].

As a check, the potential matrix can also be calculated
using a Hund’s case (a) basis, in which these long-range
potentials are relatively simple, and then transformed. De-
noting the case (a) energies by εΛSg and εΛSu, again fol-
lowing Gao [12], we find

〈α1, α2, F, φ̄; T, MT , PT |HBO|α′
1, α

′
2, F

′, φ̄; T, MT , PT 〉 =

(−1)J2+J′
2+1[f1f

′
1f2f

′
2J2J

′
2FF ′]1/2

×
∑

JJ′ISΛι

(−1)J+J′−I−ι[JJ ′IS]

⎧
⎨

⎩

1 J2 J
1
2

1
2 I

f1 f2 F

⎫
⎬

⎭

⎧
⎨

⎩

1 J ′
2 J ′

1
2

1
2 I

f ′
1 f ′

2 F ′

⎫
⎬

⎭

×
{

J S 1
1 J2 1

}{
J ′ S 1
1 J ′

2 1

}(
J I F

φ̄ − ι ι −φ̄

) (
J ′ I F ′

φ̄ − ι ι −φ̄

)

×
(

1 S J
Λ φ̄ − ι − Λ ι − φ̄

) (
1 S J ′

Λ φ̄ − ι − Λ ι − φ̄

)

×{εΛSg + εΛSu +
[
1 + (−1)I−S+PT −1

]
(εΛSg − εΛSu)}/2.

In this case HBO is simply the sum of the retarded reso-
nant dipole and the dispersion interactions.

As noted in the introduction, the levels of 3He cannot
be described in a pure {J, f} basis. A careful description
of the hyperfine structure in 3He (1s 2p 3P) has been
provided by Hinds et al. [15], who included the interaction
with the (1s 2p 1P) level and were able to characterize
the constants in their hyperfine Hamiltonian at the level
of 20 kHz. Here, for the purposes of evaluating mixing in
the intermediate basis, we have neglected some very small
terms in their Hamiltonian and employed

Hhfs = Ci · S + Di · L, (14)

with C = −4283.89 MHz and D = −28.13 MHz. This
Hamiltonian mixes states of the same f but different J .
There is no mixing of the {J, f} = {2, 5/2} level and the
mixed f = 3/2 levels can be written

{2, 3/2}′ = cos θ1{2, 3/2}+ sin θ1{1, 3/2}
{1, 3/2}′ = − sin θ1{2, 3/2}+ cos θ1{1, 3/2},

where the primes denote the mixed levels and their J label
now indicates the pure J state of larger overlap. For the
f = 1/2 levels we have analogous relations with mixing an-
gle θ2. Using Hhfs from equation (14) and the pure-level
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Fig. 1. The adiabatic potentials for 3He 2 3S + 2 3P. Values of φ̄ and parity are indicated on each plot. The atomic limits are
indicated as f1, (J, f2), where f1 and f2 are the total angular momenta of the 2 3S and the 2 3P states, respectively, and J indicates
the 2 3P pure J state of larger overlap - see text. A colour version of the figure is available online at http://www.eurphysj.org.

energies from Hinds et al. [15] we obtained θ1 = 2.557
and θ2 = 0.108. Almost identical values have been ob-
tained by [16] with D = 0 in equation (14). The splitting
of the f = 3/2 levels with this Hamiltonian is obtained as
5169 MHz, in satisfactory agreement with the best value of
5180.214 MHz [17]. Similarly the splitting for the f = 1/2
levels is obtained as 28 112 MHz, compared to the best
value of 28 092.932 MHz [17]. Using these mixing angles
the Hamiltonian has been transformed to the intermedi-
ate coupling basis. The 2 3P hyperfine energy spacings
employed have been obtained from Zhao et al. [17].

4 Results

The appropriate energy splittings and the diagonal part of
the T = 0 centrifugal potential, (F (F + 1) − 2φ̄2)/2µR2,
have been added to the potential matrix to obtain the
body-fixed Hamiltonian matrix. The zero of energy has
been taken as the f1 = 3/2, J2 = 2, f2 = 5/2 level, where
atoms 1 and 2 are in the 2 3S and 2 3P levels, respec-
tively. This Hamiltonian has been diagonalized to yield
the body-fixed adiabatic potentials. As there are ten sets
of potential curves arising from two parities and five val-
ues of φ̄, we show in Figure 1 only those with promising
ultra-long-range wells, φ̄ = 3± and 0±. In the 0+ and 0−

symmetries the twelfth state has a well of depth 0.74 GHz
and 1.33 GHz, respectively, and these states are relatively
isolated. The asymptote of both curves is the f1 = 3/2,
J2 = 0, f2 = 1/2 level. For the 3+ and 3− states, the
fourth state has a well of 2.4 GHz and 0.74 GHz, re-
spectively, due in this case to relatively distant avoided
crossings. The asymptote for these states is the f1 = 1/2,
J2 = 2, f2 = 5/2 level. For the fourth 3− state a Landau-
Zener estimate suggests that the avoided crossing should
be traversed adiabatically; however for the closer avoided
crossing at generally higher speeds in the fourth 3+ state
the adiabatic approximation may be breaking down. Non-
adiabatic effects appear unimportant for the twelfth 0±
states.

We have determined the rovibrational levels in these
wells using the code LEVEL of LeRoy [18]. Some results
are listed in Table 1, for T ≤ 4 since the entrance channel
for photoassociation at very low energies will have T ≤ 3.
We see from the table that indeed there are a number
of rovibrational levels in the ultra-long range wells. The
relatively isolated levels associated with the twelfth 0±
symmetry may offer the best chance of observation. While
these levels are metastable, the predissociation widths of
comparable levels in 4He were of the order of, or smaller
than, the natural linewidth [3].
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Table 1. Rovibrational binding energies, relative to the dissociation limit, in units of MHz, for 3He2 close to the 2 3S + 2 3P
asymptote.

State No. Symmetry v \ T 0 1 2 3 4

0 −365 −326 −251 −147 −28

12 0+ 1 −58 −43 −17

2 −2

0 −839 −794 −706 −578 −417

1 −282 −256 −208 −141 −64

12 0− 2 −69 −58 −37 −13

3 −10 −7

0 −1407 −1261

4 3+ 1 −498 −403

2 −111 −59

4 3− 0 −306 −230

1 −38 −3

5 Summary and conclusions

Various ultra-long range wells have been found for 3He2

dissociating to 1s 2s 3S1 + 1s 2p 3PJ . Several of these wells
have been shown to support rovibrational levels. Calcula-
tions are in progress to refine these estimates by includ-
ing the neglected non-adiabatic and Coriolis couplings.
The new long-range potentials calculated here could also
be combined with the recently determined [19] short
range 5Σ+

g/u, 5Πg/u potentials to obtain further near-
dissociation rovibrational levels, particularly the lower lev-
els for which predissociation is forbidden.

The same approach can readily be adapted to
investigate long-range potentials dissociating to 3He
2s 3S + 3p 3P, though the convergence of the long-range
expansion of the potential in the well regions might be
open to question [20].
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19. A.S. Dickinson, F.X. Gadéa, T. Leininger, Europhys. Lett.

70, 320 (2005)
20. J. Koelemeij, Ph.D. thesis, Free University of Amsterdam,

2004

R
ap

id
e 

N
ot

e

H
ighlight Paper


